Suppose I have a vector such as
.
Now the curl of this vector will be
![\[ \text{curl}~\textbf{A} = \nabla \times \textbf{A} = \left|\begin{array}{ccc} \textbf{i} & \textbf{j} &\textbf{k}\\ \cfrac{\partial}{\partial x} & \cfrac{\partial}{\partial y} & \cfrac{\partial}{\partial z}\\ a_x & a_y & a_z \end{array}\right|.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image003.webp)
So if I evaluate the determinant, I’ll get the curl of this vector.
If interested, you can read more about the other posts in vector analysis like directional derivative, the gradient of a scalar field, unit normal vector, unit tangent vector and so on. Also, pretty soon I’ll write about the divergence of any vector.
Now I’ll give some examples.
EXAMPLE 1
According to Stroud and Booth (2011)*, “Show that curl is a constant vector.”
SOLUTION
Now here the given vector is .
First of all, I’ll give it a name, say .
So I can say . And this means
.
Now, according to the formula for the curl of a vector, curl of the vector will be
![\[ \text{curl}~\textbf{A} = \nabla \times \textbf{A} = \left|\begin{array}{ccc} \textbf{i} & \textbf{j} &\textbf{k}\\ \cfrac{\partial}{\partial x} & \cfrac{\partial}{\partial y} & \cfrac{\partial}{\partial z}\\ -y & x &0 \end{array}\right|.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image007.webp)
Next, I’ll evaluate this determinant to get the curl as
![\[\text{curl}~\textbf{A} = \textbf{i} \left[\cfrac{\partial}{\partial y}(0) - \cfrac{\partial}{\partial z} (x)\right] - \textbf{j}\left[\cfrac{\partial}{\partial x}(0)-\cfrac{\partial}{\partial z}(-y)\right]+\textbf{k}\left[\cfrac{\partial}{\partial x}(x)-\cfrac{\partial}{\partial y}(-y)\right].\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image008.webp)
So this gives
![\[\text{curl}~\textbf{A} = \textbf{i} \left[0 - 0\right] - \textbf{j}\left[0-0\right]+\textbf{k}\left[1-(-1)\right].\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image009.webp)
Now I’ll simplify it to get
![\[\text{curl}~\textbf{A} = 2 \textbf{k}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image010.webp)
And is obviously a constant vector.
Hence I can prove that the curl of the vector is a constant vector.
So this is the answer to this example.
Next, I’ll give another example.
EXAMPLE 2
According to Stroud and Booth (2011)*, “If , find curl curl
.”
SOLUTION
Now in this example, the given vector is .
First of all, I’ll find out the curl of the vector .
STEP 1
So the curl of the vector will be
![\[ \text{curl}~\textbf{A} = \nabla \times \textbf{A} = \left|\begin{array}{ccc} \textbf{i} & \textbf{j} &\textbf{k}\\ \cfrac{\partial}{\partial x} & \cfrac{\partial}{\partial y} & \cfrac{\partial}{\partial z}\\ 2xz^2 & -xz &(y+z) \end{array}\right|.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image013.webp)
Next, I’ll evaluate this determinant to get the curl as
![\begin{eqnarray*}\text{curl}~\textbf{A} &=& \textbf{i} \left[\cfrac{\partial}{\partial y}(y+z) - \cfrac{\partial}{\partial z} (-xz)\right] - \textbf{j}\left[\cfrac{\partial}{\partial x}(y+z)-\cfrac{\partial}{\partial z}(2xz^2)\right]\\&&+\textbf{k}\left[\cfrac{\partial}{\partial x}(-xz)-\cfrac{\partial}{\partial y}(2xz^2)\right].\end{eqnarray*}](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image014.webp)
So this gives
![\[\text{curl}~\textbf{A} = \textbf{i} \left[1+x\right] - \textbf{j}\left[0-4xz\right]+\textbf{k}\left[-z-0\right].\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image015.webp)
Now I’ll simplify it to get
![\[\text{curl}~\textbf{A} =(1+x)\textbf{i} + 4xz \textbf{j} - z \textbf{k}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image016.webp)
Next I’ll get the curl of curl , that is, curl of the vector
.
STEP 2
Thus curl curl will be will be
![\[ \text{curl curl}~\textbf{A} = \nabla \times \textbf{A} = \left|\begin{array}{ccc} \textbf{i} & \textbf{j} &\textbf{k}\\ \cfrac{\partial}{\partial x} & \cfrac{\partial}{\partial y} & \cfrac{\partial}{\partial z}\\ (1+x) & 4xz &-z \end{array}\right|.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image018.webp)
Next, I’ll evaluate this determinant to get the curl curl as
![\begin{eqnarray*}\text{curl curl}~\textbf{A} &=& \textbf{i} \left[\cfrac{\partial}{\partial y}(-z) - \cfrac{\partial}{\partial z} (4xz)\right] - \textbf{j}\left[\cfrac{\partial}{\partial x}(-z)-\cfrac{\partial}{\partial z}(1+x)\right]\\&&+\textbf{k}\left[\cfrac{\partial}{\partial x}(4xz)-\cfrac{\partial}{\partial y}(1+x)\right].\end{eqnarray*}](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image019.webp)
So this gives
![\[\text{curl curl}~\textbf{A} = \textbf{i} \left[0-4x\right] - \textbf{j}\left[0-0\right]+\textbf{k}\left[4z-0\right].\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image020.webp)
Now I’ll simplify it to get
![\[\text{curl curl}~\textbf{A} =-4x\textbf{i} + 4z \textbf{k}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/17_files/image021.webp)
Hence I can conclude that curl curl is the answer to this example.