Let’s suppose is the equation of any curve. Then the length of the curve between
and
is
![\[S = \int_a^b \sqrt{1+\left(\cfrac{dy}{dx}\right)^2}~dx.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image004.webp)
EXAMPLE 1
According to Stroud and Booth (2013)*, “Find the length of the arc of the curve , between
and
.”
SOLUTION
Now here the equation of the curve is
(1)
First of all, I’ll get the value of .
STEP 1
So, from equation (1), I can say that the value of is
![\[y = \frac{x^4+3}{6x} \Rightarrow y = \frac{x^3}{6} + \frac{1}{2x}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image011.webp)
Next, I’ll differentiate with respect to
to get
![\[\frac{dy}{dx} = \frac{3x^2}{6} - \frac{1}{2x^2}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image013.webp)
Then I’ll simplify it to get
![\[\frac{dy}{dx} = \frac{x^2}{2} - \frac{1}{2x^2}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image014.webp)
So this means
![\[\frac{dy}{dx} = \frac{1}{2} \left(x^2 - \frac{1}{x^2}\right).\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image015.webp)
Therefore the value of is
![\[\left(\cfrac{dy}{dx}\right)^2 = \frac{1}{4} \left(x^2 - \frac{1}{x^2}\right)^2.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image016.webp)
If I simplify it, I’ll get

Next, I’ll get the value of .
STEP 2
At first, I’ll get the value of .
Thus it will be
![\[1+\left(\cfrac{dy}{dx}\right)^2 = 1 +\frac{1+x^8-2x^4}{4x^4}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image020.webp)
Now I’ll simplify it to get
![\[1+\left(\cfrac{dy}{dx}\right)^2 = \frac{4x^4+1+x^8-2x^4}{4x^4}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image021.webp)
So this gives

Therefore the value of is
![\[\sqrt{1+\left(\cfrac{dy}{dx}\right)^2} = \frac{x^4+1}{2x^2}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image023.webp)
And that means
![\[\sqrt{1+\left(\cfrac{dy}{dx}\right)^2} = \frac{x^2}{2}+\frac{1}{2x^2}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image024.webp)
Now I’ll get the length of the arc of the curve
, between
and
.
STEP 3
So it will be
![\[S = \int_1^2 \sqrt{1+\left(\cfrac{dy}{dx}\right)^2}~dx.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image026.webp)
And that means
![\[S = \int_1^2 \left(\frac{x^2}{2}+\frac{1}{2x^2}\right)~dx.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image027.webp)
Next, I’ll integrate it to get
![\[S = \left[\frac{x^3}{2.3} - \frac{1}{2x} \right]_1^2 = \left[\frac{x^3}{6} - \frac{1}{2x} \right]_1^2 .\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image028.webp)
Then I’ll substitute the limits to get
![\[S = \left[\frac{2^3}{6} - \frac{1}{2.2} \right] - \left[\frac{1^3}{6} - \frac{1}{2.1} \right].\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image029.webp)
Now I’ll simplify it. And that gives
![\begin{eqnarray*} S &=& \left[\frac{8}{6} - \frac{1}{4} \right] - \left[\frac{1}{6} - \frac{1}{2} \right]\\ &=& \frac{4}{3} - \frac{1}{4} - \frac{1}{6} + \frac{1}{2}\\ &=& \frac{16-3-2+6}{12}\\ &=& \frac{17}{12}.\end{eqnarray*}](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image030.webp)
Thus the length of the arc is . Hence I can conclude that this is the answer to the given example.
Now I’ll give another example.
EXAMPLE 2
According to Stroud and Booth (2013)*, “Find the length of the curve between
and
.”
SOLUTION
Now here the equation of the curve is
(2)
First of all, I’ll get the value of .
STEP 1
So I’ll differentiate equation (2) throughout with respect to . And that gives
![\[8\left(\frac{dy}{dx} + \frac{1}{x}\right) = 2x.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image035.webp)
Next, I’ll simplify it to get
![\[4\left(\frac{dy}{dx} + \frac{1}{x}\right) = x.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image036.webp)
So this means
![\[\frac{dy}{dx} + \frac{1}{x} = \frac{x}{4}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image037.webp)
And that gives the value of as
![\[\frac{dy}{dx} = \frac{x}{4} - \frac{1}{x} = \frac{x^2 - 4}{4x}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image039.webp)
Now I’ll get the value of . So that will be
![\[\left(\cfrac{dy}{dx}\right)^2 =\frac{(x^2 - 4)^2}{(4x)^2}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image040.webp)
Next, I’ll get the value of .
STEP 2
At first, I’ll get the value of .
Thus it will be
![\[1+\left(\cfrac{dy}{dx}\right)^2 = 1 + \frac{(x^2 - 4)^2}{(4x)^2}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image041.webp)
Now I’ll simplify it to get
![\[1+\left(\cfrac{dy}{dx}\right)^2 = \frac{(4x)^2 + (x^2 - 4)^2}{(4x)^2}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image042.webp)
So this gives

Therefore the value of is
![\[\sqrt{1+\left(\cfrac{dy}{dx}\right)^2} = \frac{x^2+4}{4x}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image044.webp)
And that means
![\[\sqrt{1+\left(\cfrac{dy}{dx}\right)^2} = \frac{x}{4}+ \frac{1}{x}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image045.webp)
Now I’ll get the the length of the curve between
and
.
STEP 3
So it will be
![\[S = \int_1^e \sqrt{1+\left(\cfrac{dy}{dx}\right)^2}~dx.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image046.webp)
And that means
![\[S = \int_1^e \left(\frac{x}{4}+ \frac{1}{x}\right)~dx.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image047.webp)
Next, I’ll integrate it to get
![\[S = \left[\frac{x^2}{2.4} + \ln x\right]_1^{e} = \left[\frac{x^2}{8} + \ln x\right]_1^{e}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image048.webp)
Then I’ll substitute the limits to get
![\[S = \left[\frac{e^2}{8} + \ln e\right] - \left[\frac{1^2}{8} + \ln 1\right].\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image049.webp)
Now I’ll simplify it and that gives
![\begin{eqnarray*} S &=& \left[\frac{e^2}{8} + 1\right] - \left[\frac{1}{8} + 0\right]\\ &=& \frac{e^2}{8} + 1 - \frac{1}{8}\\ &=& \frac{e^2}{8} + \frac{7}{8}\\ &=& \frac{e^2 + 7}{8}. \end{eqnarray*}](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/1_files/image050.webp)
Thus the length of the curve is .
Hence I can conclude that this is the answer to the given example.