EXAMPLE 1
According to Stroud and Booth (2011),* “If 
, evaluate 
between 
 and 
 along the curve with parametric equations 
.”
SOLUTION
Here the given scalar field is 
. Also the parametric equations of 
 and 
 are 
.
Now my first step will be to write 
 in terms of 
.
STEP 1
So, I’ll substitute 
 and 
 in 
.
Then it will be
![\[V = (2t)^3(t^2) + 2 (2t)(t^2)^2 + (t^2)(-3t^3).\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image012.webp)
Now I’ll simplify it. So it will be
![\[V = 8t^5 + 4t^5 - 3t^5.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image013.webp)
And this gives the value of 
 as
![\[V = 9t^5.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image014.webp)
Next I’ll get the values of 
 and 
.
Since 
, the value of 
 is
![\[ \boxed{\text{d}x = 2 \text{dt}.} \]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image019.webp)
As I know 
, the value of 
 is
![\[ \boxed{\text{d}y = 2 t\text{dt}.} \]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image022.webp)
Also, since 
, the value of 
 is
![\[ \boxed{\text{d}z = - 9 t^2\text{dt}.} \]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image024.webp)
Now I have to get the value of 
.
Thus in terms of 
, it will be
![\[\int_c V~\text{d}\textbf{r} = \int_c 9t^5 (\textbf{i}2\text{dt} + \textbf{j}2t\text{dt} + \textbf{k}(-9t^2)\text{dt}).\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image025.webp)
So this means
![\[ \boxed{\int_c V~\text{d}\textbf{r} = 9 \int_c (\textbf{i} 2t^5 \text{dt}  + \textbf{j} 2t^6 \text{dt} - \textbf{k} 9t^7\text{dt}) .} \]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image026.webp)
Now my next step is to find out the limits of integration.
STEP 2
Ok, so I have to integrate the scalar field 
 between 
 and 
. And that means I have to find out the value of 
 corresponding to the points 
and 
.
So, I already know that the 
 coordinate of 
 is 
. Also, the parametric form of 
 is 
. Then I’ll equate the 
 coordinate of 
 to the parametric form of 
.
Thus it becomes
![\[2t = 0 \Rightarrow t = 0.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image033.webp)
Now I’ll check if 
 is also valid for 
 and 
 coordinates.
If I put 
 in 
, it becomes
![\[y = (0)^2.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image038.webp)
So this gives the 
 coordinate as 
.
Similarly, I put 
 in 
. And that gives
![\[z = -3(0)^3.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image039.webp)
So here also I get the 
 coordinate as 
. Thus it means 
 is the lower limit of integration.
In the same way, now I’ll get the value of 
 corresponding to the point 
. Now the 
 coordinate of 
 is 
. Therefore I can say that
![\[2t = 2\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image041.webp)
which gives 
.
So I have two limits of integration – one is 
 and the other is 
. Therefore 
 will be

Thus my next step will be to evaluate 
.
STEP 3
So I can rewrite 
 as
![\[\int_c V~\text{d}\textbf{r} = 9 \left[ \int_{0}^{1} \textbf{i} 2t^5 \text{dt} + \int_{0}^{1} \textbf{j} 2t^6 \text{dt} - \int_{0}^{1} \textbf{k} 9t^7\text{dt}\right].\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image044.webp)
Now I’ll integrate this vector in the same way as the integration of a vector field. Also, I’ll follow the same rules as the rules for integration.
Hence it will be
![\[\int_c V~\text{d}\textbf{r} = 9 \left[ \frac{2t^6}{6} \textbf{i} +  \frac{2t^7}{7} \textbf{j} - \frac{9t^8}{8}\textbf{k}\right]_{0}^{1}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image045.webp)
Next, I’ll substitute these limits to get
![\[\int_c V~\text{d}\textbf{r} = 9 \left[ \frac{2}{6} \textbf{i} +  \frac{2}{7} \textbf{j} - \frac{9}{8}\textbf{k}\right].\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image046.webp)
And this gives
![\[\int_c V~\text{d}\textbf{r} = \left[ \frac{9 \times 2}{6} \textbf{i} +  \frac{9 \times 2}{7} \textbf{j} - \frac{9 \times 9}{8}\textbf{k}\right].\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image047.webp)
If I simplify it, I’ll get
![\[\int_c V~\text{d}\textbf{r} = 3 \textbf{i} +  \frac{18}{7} \textbf{j} - \frac{81}{8}\textbf{k}.\]](https://appassets.softecksblog.in/engineering_mathematics/assets/em2/15_files/image048.webp)
Hence I can conclude that this is the answer to the given example.